Chapter 1: Real numbers

- Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$ $b^{2}=c^{2}-a^{2}$
- Laws of Exponents:
$a^{0}=1 \quad a^{1}=a \quad a^{-n}=\frac{1}{a^{n}}$
$\left(a^{n} a^{m}\right)=a^{m+n} \quad \frac{a^{m}}{a^{n}}=a^{m-n}$
$\left(a^{n}\right)^{m}=a^{m}$
$(a b)^{m}=a^{m} b^{m} \quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
- Scientific notation: a $\times 10^{n}$

Ex 4: Simplify the following expression
$\frac{\left(\left(x^{9} y^{3}\right)^{6}\right)^{\frac{1}{3}} \cdot\left(x^{4} y^{2}\right)^{-2}}{\left(\left(x^{5} y^{8}\right)^{-4}\right)^{-\frac{1}{2}} \cdot\left(y^{3}\right)^{-4}}$
Ex. 5 Express using scientific notation
POSITIVE EXPONENT NEGATIVE EXPONENT
a) 5600
b) 0.00042

Chapter 2: Algebraic Expressions
Polynomials: Monomials, Binomials, Trinomials

- Vocabulary: Coefficient, like terms, degree $3 x^{7}$
- Adding/Subtracting polynomials
$>$ Group like terms only
$>$ Exponents don't change
- Multiplying/Dividing polynomials
> Add/subtract exponents of terms with
same base
> FOIL: multiplying 2 binomials
- Common factor .

Ex. 2 Subtracting Polynomials
$7 x-(5 x+10 x)=$
$8 x^{2}+4 x-\left(6 x^{2}+2 x\right)=$
$4 a+7 b-(12 a-5 b)=$
$7 c+6 c^{2}-\left(8 c^{2}-10\right)=$

Ex. 3 Multiplying Polynomials
$3 x\left(5 x^{2}+2 x\right)=$
$-5(2 x+1)=$
$-2 x^{2}(3 x+5)=$
$\frac{2}{3} x^{2}\left(6 x^{3}-9 x+3\right)=$

Ex. 4 Foil
$(x+2)(x+2)=$
$(x-3)^{2}=$
$(4 x-3)(2 x+1)=$

Ex 5: Expand and Simplify:
a) $(3 x+5)(2 x-4)=$
b) $\left(3 x^{2}-5 x\right)-\left(6 x^{2}-2 x+4\right)=$
c) $\left(4 x^{2} y^{3}\right)^{2}=$ $\left(3^{2} y^{2}\right)^{2}$
d) $5 x+7 y-2(2 x-6 y)=$

Ex. 6 Division of a Polynomial- Divide each monomial individually	
$\frac{9 x^{3}+6 x^{2}-\sqrt{2 x}}{3 x}$	$\frac{18 a^{2}+12 a b}{3 a}$
\equiv	를
$\frac{18 x^{2}+8 x+6}{3}$	$\frac{20 x y^{5}-15 x y^{2}+30 x^{2} y^{4}}{5 x y}$
E	를

Chapter 3: Equations \& Inequalities

- Solving Equations (=)
> Keywords: same as, equal, equivalent,
$>$ Solve for the unknown variable
$>$ There is one unique solution
- Solving Inequalities (<; $\leq ;>; \geq$)
$>$ Keywords: less than; less than or equal to(maximum); greater than(more); greater or equal to(minimum)
$>$ There is an interval of possible solutions.
\# Line \quad Interval \quad Set Builder
\qquad \# Line \quad Interval \quad Set Builder
\# Line \quad Interval \quad Set Builder
Ex 1: $5 x+12 \leq 3 x+20$
\# Line \quad Interval \quad Set Builder
Ex. 7 Factor by pulling out the GCF
$4 x+6=$
$9 x-15=$
$6 x^{2}+10 x=$
$49 x^{3} y^{2}-21 x^{2} y^{2}+14 x^{3} y^{3}=$
$2 a^{2} b^{2}-6 a b^{3}+4 a b^{2}=$
$x(x+3)+2(x+3)=$

Ex 2	$-5 x \leq 2 x-21$	
\# Line	Interval	

Ex 3	$2(2 x-1)-3(x+1) \leq 2(x-3)$
\#Line	Interval

Chapter 4: Relations \& Functions

- Linear Function

$>y=a x+b ;$	a: Rate of Change; b: Initial value (or y-intercept)
$>$ Constant:	$y=b ; \quad a=0 ; ~ h o r i z o n t a l ~ l i n e ~$
$>$ Direct:	$y=a x ; b=0 ; \quad$ line through origin
> Partial:	$y=a x+b ; \quad$ line not thru origin
System of linear equations	
$>$ Solve for the point of intersection (x, y)	
Rational function	
$>\mathrm{y}=\frac{k}{x}$	Curve, never touches either axes.

Find the rate of Change for the Following
Ex 1: A tank initially contains 56000 L of
eggnog. The tank is leaking!
After 5 hrs the tank has 45000 L .
Ex 2: Jen earns $\$ 240$ for 20 hours of work. For 10
hours of work she earns $\$ 120$. What is her hourly rate?

Chapter 5: Solids

- Views of solids:
$>$ Top, Bottom, Left, Right, Front, Back
- Perspectives:
$>$ Oblique
$>$ Axonometric
$>$ Linear.

2. Axonometric Perspective

-The edges are parallel to the axes -Not all edges are necessarily congruent (same length)

Chapter 6: Area and Volume of Solids

- Areas and Volumes of solids
>Cube, Prism, Cylinder, Cone, Pyramid, Sphere
- Areas and Volume of decomposable solids
- Finding the missing measure
- Conversion charts

Recall the AREA of a:

1. Rectangle $=l \bullet w$	2. Square $=b^{2}$
3. Parallelogram $=b \bullet h$	4. Circle $=\pi r^{2}$
5. Triangle $=\frac{b \bullet h}{2}$	6. Trapezoid $=\left(\frac{B+b}{2}\right) \bullet h$
7. Rhombus $=\frac{D \bullet d}{2}$	
8. Regular polygon $=\frac{P_{\text {base }} \bullet a}{2}$	

SOLIDS	LATERAL AREA	TOTAL AREA	Volume
RIGHT PRISMS	$A_{L A T}=P_{B} \bullet h$	$\mathrm{A}_{\text {TOT }}=\mathrm{P}_{\mathrm{B}} \mathrm{h}+2 \mathrm{~A}_{\mathrm{B}}$	$\mathrm{V}_{\text {prism }}=\mathrm{A}_{\mathrm{b}} \bullet \mathrm{h}$
RIGHT CYLINDERS	$A_{\text {LAT }}=2 \pi r h$	$\mathrm{A}_{\text {тот }}=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}$	$\begin{aligned} & V_{c y l i n d e r}= \\ & \pi r^{2} \bullet h \end{aligned}$
RIGHT REGULAR PYRAMIDS	$\mathrm{A}_{\text {LAT }}=\frac{P_{b} s}{2}$	$\mathrm{A}_{\text {TOT }}=\frac{P_{b} s}{2}+\mathrm{A}_{\mathrm{b}}$	$\mathrm{V}_{\text {pyramid }}=\frac{A_{b} \bullet h}{3}$
RIGHT CONES	$\mathrm{A}_{\text {LAT }}=\pi \mathrm{rs}$	$\mathrm{A}_{\text {тот }}=\pi \mathrm{rS}+\pi \mathrm{r}^{2}$	$\mathrm{V}_{\text {cone }}=\frac{\pi r^{2} \cdot h}{3}$
SPHERES	$\mathrm{A}_{\text {LAT }}=$	$\mathrm{A}_{\text {TOT }}=4 \pi \mathrm{r}^{2}$	$\mathrm{V}_{\text {sphere }}=\frac{4 \pi r^{3}}{3}$
HEMISPHERE	$A_{\text {LAT }}=$ Note: if the ba	$\mathrm{A}_{\text {тот }}=2 \pi \mathrm{r}^{2}$ e is included, add πr^{2}	$\mathrm{V}_{\text {sphere }}=\frac{2 \pi r^{3}}{3}$

Chapter 7: Isometry and Similitude

- When two solids are similar
$>$ The ratio of their sides is K
$>$ Sides of the larger solid are K times bigger than the smaller one.
$>$ The ratio of their areas is K^{2}
>Area of the larger solid is K^{2} times bigger than the smaller one
$>$ The ratio of their volumes is k^{3}
$>$ Volume of the larger solid is k^{3} times bigger than the smaller one.

Chapter 8: Probability

- Basic counting principle
$>$ Permutation (with/without repetition)
$>$ Combination (with/without repetition)
- Probability of events
$>$ Prob $=\quad$ \# of desired outcomes
- Geometric Probability
$>1 \mathrm{D} \quad \mathrm{P}($ Target $)=\frac{\text { Target length }}{\text { Tatal }}$
$>1 \mathrm{P}($ Target $)=\frac{\text { Target length }}{\text { Total length }}$
$>2 \mathrm{D} P($ Target $)=\frac{\text { Target area }}{\text { Tota }}$
Total area
$>3 D \quad P($ Target $)=\frac{\text { Target volume }}{\text { Total volume }}$

	With repetition (or replacement)	Without repetition (or replacement)
Permutations (with order)	n^{k}	$\begin{aligned} & n!\text { (if all items) } \\ & \text { or } \\ & \underline{n} \frac{(\mathrm{n}-1}{(\text { if } k \text { items })} \end{aligned}$
Combination (without order)	$\frac{(n+k-1)!}{(n-1)!k!}$	$C_{k}^{n}=\frac{n!}{(n-k)!k!}$
n is the total available items/choices k is the number of items/choices needed		

Chapter 9: Statistics

- Type of Survey: >Census, Poll, or Study
- Type of variable/data: >Qualitative
- Sampling methods: >Random, Systematic, Stratified, Cluster
- Tables and Diagrams: >Histogram, Box and Whiskers plot
- Measures of central tendency: >Mode, Median, \& Mean
- Measures of position: >Quartiles
- Measures of dispersion: >Range, \& Interquartile range

Ex 3: The NUT HOUSE factory has two types of containers, a square base prism and a cylinder. Each hour they package 20 of the prism and 25 of the cylinder. Between 2 pm and 3 pm , they had some problem with their machine and lost one of their bolts in one of the containes. What is the probability that it fell in a cylinder container?

Ex 2: (Grouped data) find the mean height

Ex 1: The following table shows the distribution of the 1200 students in a school.

	\# of girls	\# of boys
First cycle	360	345
Second cycle	240	255

A sample of 180 students is required, it must be representative of the population. How many girls from the second cycle should be in the sample?

Ex 5: \# of movies watched at the cinema in a year. Make a Box and Whiskers plot.
$\begin{array}{lllllllllllll}3 & 5 & 8 & 9 & 12 & 14 & 16 & 17 & 17 & 18 & 19 & 20 & 20\end{array}$

